Alexis Fons

Construction Management

Advisor: Dr. Leicht

Analysis 1:

9th Story Design Change

Analysis 2:

Link Bridge Prefabrication

Analysis 3:

Structural Lift System

Structural Breadth

Mechanical Breadth

Analysis 4:

Field Labor Experience

Introduction

Analysis 1

Analysis 2

Analysis 3

Analysis 4

Conclusion

Building Details

Location | The Midwest

Size | 129,416 square feet

Height | 9 stories above grade

Cost | \$40.05 million

Duration | 17 months

June 2015 – October 2016

Introduction

Analysis 1

Analysis 2

Analysis 3

Analysis 4

Conclusion

Building Details

Location | The Midwest

Size | 129,416 square feet

Height | 9 stories above grade

Cost | \$40.05 million

Duration | 17 months

June 2015 – October 2016

Project Delivery Method

Delivery Method | Design-Build (Turnkey)

Project Team:

Introduction
Analysis 1 •-

Analysis 2

Analysis 3

Analysis 4

Conclusion

9th Story Design Change

Background Information

Locational Information

Occupancy Study

Profitability

Redesign

Cost Analysis

Schedule Analysis

Lifecycle Analysis

Final Recommendation

Analysis 1

9th Story Design Change

Background Information

High-End Luxury Rooms
245 Standard Rooms

Opportunity Include Suites on 9th Story

Points of Interest

Nearby Hotels

Introduction
Analysis 1
Analysis 2
Analysis 3
Analysis 4

9th Story Design Change
Background Information
Locational Information
Occupancy Study
Profitability
Redesign
Cost Analysis
Schedule Analysis
Lifecycle Analysis

Final Recommendation

Point Label	Points of Interest
Α	Historic Island
В	River Parkway
С	MLB Field
D	Library
E	Historical Bridge
F	Multi-purpose Arena
G	Historical Society museum
Н	Twelve-block Outdoor Mall
J	Art Center
K	Convention Center
Point Label	Public Transportation
1	Light Rail Station
2	Train Station
3	Bus Stop
4	Public Bike Sharing Stations

28 Hotels within 0.75 miles

Conclusion

Nearby Hotel Prices

Suites

Standard

Rooms

Cost per Square Foot

Introduction

Analysis 1

Analysis 2

Analysis 3

Analysis 4

9th Story Design Change
Background Information

Locational Information

Occupancy Study
Profitability

Redesign

Cost Analysis

Schedule Analysis

Lifecycle Analysis

Final Recommendation

Conclusion

\$360

9th Story Design Change

Analysis 1 •-

Introduction

Analysis 2

Analysis 3

Analysis 4

Conclusion

Background Information
Locational Information
Occupancy Study
Profitability
Redesign
Cost Analysis
Schedule Analysis
Lifecycle Analysis
Final Recommendation

5 Suite Study

10 Suite Study

ccupancy Rate	Cost per Suite
100%	\$220
62%	\$325
52%	\$360
42%	\$424
0%	\$950

Introduction Analysis 1 • Analysis 2 Analysis 3 Analysis 4 Conclusion

9th Story Design Change

Background Information
Locational Information
Occupancy Study
Profitability
Redesign

Cost Analysis
Schedule Analysis
Lifecycle Analysis
Final Recommendation

Suite Profitability

Revenue of Suites

Suite Profitability

Introduction
Analysis 1
Analysis 2
Analysis 3
Analysis 4

Conclusion

9th Story Design Change

Background Information

Background Information
Locational Information
Occupancy Study
Profitability

Redesign
Cost Analysis
Schedule Analysis
Lifecycle Analysis
Final Recommendation

Occupancy Rate (%)

Floor Plan Redesign

Introduction

Analysis 1

Analysis 2

Analysis 3

Analysis 4

Conclusion

9th Story Design Change

Background Information
Locational Information
Occupancy Study
Profitability
Redesign
Cost Analysis
Schedule Analysis
Lifecycle Analysis

Final Recommendation

Cost Analysis

Introduction

Analysis 1 •

Analysis 2

Analysis 3

Analysis 4

Conclusion

Background Information **Locational Information** Occupancy Study Profitability Redesign **Cost Analysis**

Schedule Analysis

Lifecycle Analysis

Final Recommendation

Finishes

Paint Flooring Wall Vinyl Tile

\$6,000

Furnishings

Standard Furniture Standard Fixtures Kitchen Equipment Living Room Furniture

Drywall

\$8,000

\$33,500 saved

Construction

Wall Studs Insulation

\$19,500

Schedule Analysis

Introduction

Analysis 1 •

Analysis 2

Analysis 3

Analysis 4

Conclusion

Background Information Locational Information Occupancy Study Profitability Redesign

Cost Analysis

Schedule Analysis

Lifecycle Analysis Final Recommendation Finishes

Paint Flooring Wall Vinyl Tile

90 man-hours

Furnishings

Standard Furniture Standard Fixtures Kitchen Equipment Living Room Furniture

Insulation

Drywall

10 man-hours

9% schedule decrease on the 9th floor

Construction

Wall Studs

190 man-hours

3 day reduction

Lifecycle Analysis

Introduction
Analysis 1
Analysis 2
Analysis 3
Analysis 4

9th Story Design Change

Background Information
Locational Information
Occupancy Study
Profitability
Redesign
Cost Analysis
Schedule Analysis

Lifecycle Analysis

Final Recommendation

Cost to Build \$40.05 million \$40.02 million

Revenue per Night \$35,630/night \$35,686/night

Cost-to-Run per Night \$25,755/night \$25,755/night

Capitalization Rate 9.00% 9.06%

Payback Period (Years)

11.11 years

11.04 years

Conclusion

Final Recommendation

Analysis 1
Analysis 2
Analysis 3
Analysis 4

9th Story Design Change

Background Information
Locational Information
Occupancy Study
Profitability
Redesign
Cost Analysis
Schedule Analysis
Lifecycle Analysis

Final Recommendation

Analysis 1

9th Story Design Change

Recommended

Conclusion

Link Bridge Prefabrication

Background Information

Crane Logistics

Schedule Analysis

Cost Analysis

Final Recommendation

Introduction

Analysis 1

Analysis 2 •

Analysis 3

Analysis 4

Conclusion

Analysis 2

Link Bridge Prefabrication

A cross-section of the link bridge and the

Background Information

Current 62' Link Bridge **Design** Space Limitation

Opportunity Prefabrication – Modular Unit

Goals

Constructability

Bridge Components

Introduction

Analysis 1

Analysis 2 •

Analysis 3

Analysis 4

Conclusion

Link Bridge Prefabrication

Background Information

Crane Logistics
Schedule Analysis
Cost Analysis
Final Recommendation

A cross-section of the link bridge and the garage

Crane Logistics

Introduction

Analysis 1

Analysis 2 •

Analysis 3

Analysis 4

Conclusion

Background Information

Crane Logistics

Schedule Analysis

Cost Analysis

Final Recommendation

Bridge Weight | 19 tons

Tower Crane

Height/Reach | 213'
Max. Capacity | 7 tons

Hydraulic | Truck Crane |

Reach | 231'
Max. Capacity | 100 tons

Schedule Analysis

Productivity

Introduction

Analysis 1

Analysis 2 •

Analysis 3

Analysis 4

Conclusion

Final Recommendation

FRP 1st Level Columns

SOG

FRP 2nd Level Deck

Bridge

9% Increase in Productivity in Prefabrication Environment

On-Site Construction Critical Path Activities | 7 Days

7 Day Schedule Reduction

\$6,500 Labor Reduction

Cost Analysis

Introduction

Analysis 1

Analysis 2 •

Analysis 3

Analysis 4

Conclusion

Background Information

Crane Logistics

Schedule Analysis

Cost Analysis

Final Recommendation

Labor Reduction \$6,500

Truck Crane Usage \$1,400

Transportation Fee \$2,500

Prefabrication Overhead (3%) \$2,000

Temporary Pier \$800

Original Cost | \$79,000

Prefabrication Cost | \$76,000

\$26,500 Savings

↓

7 Day Schedule Reduction

\$27,000 Increased Profit

Final Recommendation

Introduction

Analysis 1

Analysis 2 •

Analysis 3

Analysis 4

Conclusion

Background Information
Crane Logistics
Schedule Analysis
Cost Analysis
Final Recommendation

Link Bridge Prefabrication

A cross-section
of the link
bridge and the

Recommended

Introduction

Analysis 1

Analysis 2

Analysis 3 •

Analysis 4

Conclusion

Structural Lift System

Background Information

Structural Breadth

Systems Design

Mechanical Breadth

Site Logistics

Schedule Analysis

Cost Analysis

Final Recommendation

Analysis 3

Structural Lift System

Background Information

Stucco in winter weather Limited site space Renting multiple storage locations

Opportunity Upbrella Construction lift method

Constructability Innovation Schedule

Upbrella Construction

Introduction

Analysis 1

Analysis 2

Analysis 3 •

Analysis 4

Conclusion

Structural Lift System

Background Information

Structural Breadth

Systems Design

Mechanical Breadth

Site Logistics

Final Recommendation

Advantages: Move in earlier

Pour Floor

Exterior Enclosure Below

Roof

Protection Shell

1 Level of Structural

Early landscaping

Increased safety

Warm environment (stucco)

No crane necessary

More room on site

Video courtesy of Upbrella Construction (https://www.youtube.com/watch?v=q9bKap4FdCc)

Current Construction Method

Introduction

Analysis 1

Analysis 2

Analysis 3 •

Analysis 4

Conclusion

Structural Lift System

Background Information

Structural Breadth

Systems Design

Mechanical Breadth

Site Logistics

Schedule Analysis

Cost Analysis

Final Recommendation

Post-tensioned concrete floors

5 days/floor

1 level of shoring, 2 levels of re-shoring

Prefabricated column rebar

Tower crane

Structural Breadth

Introduction
Analysis 1
Analysis 2

Analysis 3 •

Analysis 4

Conclusion

Structural Lift System

Background Information

Structural Breadth

Systems Design
Mechanical Breadth
Site Logistics
Schedule Analysis
Cost Analysis

Final Recommendation

PT Concrete (Current) on stressing ?

Delayed column strength

Loads:

Dead | 10 psf
Live | 40 psf
Deck + Concrete | 37 psf
Joists | 5 psf
Girders | 2 psf

Decking | 1.5VL20, t = 3.25" |
Joist | W12x26
Girder | W14x30

Columns | W10x49 (floors 1-9)
W10x33 (roof)

7' taller building to maintain floor-to-ceiling height

Hydraulic Cylinders

Protection Shell

Introduction Analysis 1 Analysis 2 Analysis 3 •-Analysis 4 Conclusion

Structural Lift System

Background Information
Structural Breadth
Systems Design
Mechanical Breadth
Site Logistics
Schedule Analysis
Cost Analysis
Final Recommendation

Polycarbonate Panels:

OSHA

Light Transmission

High R-Value

Mechanical Breadth

Introduction

Analysis 1

Analysis 2

Analysis 3 •

Analysis 4

Conclusion

Background Information
Structural Breadth
Systems Design
Mechanical Breadth
Site Logistics
Schedule Analysis
Cost Analysis
Final Recommendation

Concrete Requirements: 55°F Original Method

Material	Square Footage	R-Value	U-Value	Temperature Change	Total Btu/hr	
Tarp	6,240	0.071	14.11	28.5	2,509,322	
ormwork (3/4" plywood)	14,596	0.94	1.06	28.5	442,538	
oncrete (NW 6.57" thick)	14,596	0.47	2.13	28.5	885,077	
Total Btu/hr for total construction: 3,836,937						
This is equivalent to 4 heaters						

Stucco Requirements: 40°F Original Method

Material	Square Footage	R-Value	U-Value	Temperature Change	Total Btu/hr
arp (between scaffolding and building)	6,240	0.071	14.11	10.4	915,683
Tarp (exterior)	6,600	0.071	14.11	10.4	968,510
Scaffolding Wood Planks (1.5" thick)	6,438	1.88	0.53	10.4	35,614
	Tot	al Btu/hr	for total	construction:	1,919,807
This is equivalent to 2 heaters					

Mechanical Breadth

Systems Comparison

Introduction

Analysis 1

Analysis 2

Analysis 3 •

Analysis 4

Conclusion

Background Information Structural Breadth Systems Design **Mechanical Breadth**

Site Logistics

Schedule Analysis

Cost Analysis

Final Recommendation

Constant Heating: 55°F Proposed Method

Material	Square Footage	R-Value	U-Value	Temperature Change	Total Btu/hr	
Polycarbonate Panels	17,079	2.000	0.50	27.5	234,836	
Plywood Planks (1.5")	3,219	1.880	0.53	27.5	47,086	
Concrete (3.25")	14,596	0.260	3.85	27.5	1,543,808	
Roof	14,596	24.000	0.04	27.5	16,725	
Metal Deck	14,596	0.000	N/A	27.5	-	
Solar Heat Gain Coefficient	N/A	N/A	N/A	N/A	(63,749)	
Total Btu/hr for total construction: 1,778,70						
This is equivalent to 2 heaters						

Original Method

Concrete at 55°F Stucco at 40°F

140 days \$21,100 of heat

Structural Lift Method Both systems at 55°F

136 days \$19,500 of heat

Site Plan: Original

Site Plan: Proposed

Introduction Analysis 1 Analysis 2 Analysis 3 •-Analysis 4 Conclusion

Schedule Analysis

Introduction

Analysis 1

Analysis 2

Analysis 3 •

Analysis 4

Conclusion

Structural Lift System

Background Information
Structural Breadth
Systems Design
Mechanical Breadth
Site Logistics

Schedule Analysis

Cost Analysis
Final Recommendation

Original Method:

291 days

5 days/floor of structure

Proposed Method:

258 days – 7 weeks shorter

11 days per floor overall

9% productivity increase

Interior Activities – additional overlap

Cost Analysis

Introduction

Analysis 1

Analysis 2

Analysis 3 •-

Analysis 4

Conclusion

Background Information
Structural Breadth
Systems Design
Mechanical Breadth
Site Logistics
Schedule Analysis
Cost Analysis

Final Recommendation

\$883,000 cost increase

33 Day Schedule Reduction

\$170,000 Increased Profit

Final Recommendation

Introduction Analysis 1

Analysis 2

Analysis 3 •

Analysis 4

Conclusion

Structural Lift System

Background Information
Structural Breadth
Systems Design
Mechanical Breadth
Site Logistics
Schedule Analysis
Cost Analysis

Final Recommendation

Analysis 3

Structural Lift System

Not Recommended

Introduction

Analysis 1

Analysis 2

Analysis 3

Analysis 4

Conclusion

Background Information
Current Position
Education

Success as a Superintendent Final Recommendation

Analysis 4

Field Labor Experience

Background Information

Field Labor Office Work

Superintendent

What benefits does field labor experience provide for a career as a superintendent?

How does field labor impact the role and success of a superintendent?

Introduction

Analysis 1

Analysis 2

Analysis 3

Analysis 4

Conclusion

Field Labor Experience

Background Information

Current Position

Education
Success as a Superintendent

Final Recommendation

Current Position

Level of Education

Introduction

Analysis 1

Analysis 2

Analysis 3

Analysis 4

Conclusion

Field Labor Experience

Background Information Current Position

Education

Success as a Superintendent Final Recommendation

Level of Education

Introduction

Analysis 1

Analysis 2

Analysis 3

Analysis 4

Conclusion

Current Position

Education

Success as a Superintendent Final Recommendation

31% of all respondents received a degree

Superintendent Level of Education

48% of superintendents received a degree

Construction Management and Civil Engineering

52% of superintendents went into the field

Carpentry (48%)

Success as a Superintendent

Analysis 1

Analysis 2

Analysis 3

Analysis 4

Conclusion

Background Information
Current Position
Education
Success as a Superintendent
Final Recommendation

Experiences which are beneficial to becoming a superintendent

Experience Working with Drawings and Specifications

4.9/5

Experience Working in a

4.5/5

Taking Leadership Classes

4.3/5

Success as a Superintendent

Introduction

Analysis 1

Analysis 2

Analysis 3

Analysis 4

Conclusion

Field Labor Experience

Background Information
Current Position
Education
Success as a Superintendent
Final Recommendation

Importance of skills/attributes for becoming a superintendent

Office vs. Field Experience

Importance of Relationships

Office vs. Field Experience

Field Experience
Field Credibility

Importance of Relationships

Verbal Communication
The Ability to Work with a
Team

Introduction

Analysis 1

Analysis 2

Analysis 3

Analysis 4

Conclusion

Field Labor Experience

Background Information
Current Position
Education
Success as a Superintendent
Final Recommendation

Analysis 4

Field Labor Experience

Final Recommendation

Field Laborld and Office Woffike Work

According to current superintendents, field labor experience is more valuable for a career as a superintendent.

Those receiving a higher education – go out and build.

Introduction

Analysis 1

Analysis 2

Analysis 3

Analysis 4

Conclusion

Analysis 1

9th Story Design Change

[Recommended]

Analysis 2

Link Bridge Prefabrication

Analysis 3

Structural Lift System

Introduction

Analysis 1

Analysis 2

Analysis 3

Analysis 4

Conclusion

Analysis 1

9th Story Design Change

Analysis 2

Link Bridge Prefabrication

Recommended

Analysis 3

Introduction

Analysis 1

Analysis 2

Analysis 3

Analysis 4

Conclusion

Analysis 1

9th Story Design Change

ecommended

Analysis 2

Link Bridge Prefabrication

Recommended _

Analysis 3

Structural Lift System

Not Recommended

Analysis 4

Introduction

Analysis 1

Analysis 2

Analysis 3

Analysis 4

Conclusion

Analysis 1

9th Story Design Change

Analysis 2

Link Bridge Prefabrication

Analysis 3

Analysis 4

Field Labor Experience

Extremely Beneficial

Thank you

Jesus
PSU AE Faculty
Mortenson Construction
DPR Construction
Family and Friends

Analysis 1:

9th Story Design Change

Analysis 2:

Link Bridge Prefabrication

Analysis 3:

Structural Lift System

Structural Breadth

Mechanical Breadth

Analysis 4:

9th Story Design Change Appendix

Mortenson Development Inc.

Introduction

Analysis 1

Analysis 2

Analysis 3

Analysis 4

Conclusion

Partial Owner

Introduction

Analysis 1

Analysis 2

Analysis 3

Analysis 4

Conclusion

Nearby Hotel Prices

5 Suite Study

Introduction

Analysis 1

Analysis 2

Analysis 3

Analysis 4

Conclusion

20	100%	
.ZU	 TUU /0	

\$950 ---> 0%

ost per	Occupancy
Suite	Rate
\$220	100%
\$325	87%
\$360	82%
\$424	72%
\$950	0%

Cost per Suite (\$)

5 Suites

5 Suite Study

Introduction

Analysis 1

Analysis 2

Analysis 3

Analysis 4

Conclusion

20	 100%
ZU	 TOO /O

\$360 ---> 82%

\$950 ---> 0%

Cost per	Occupancy
Suite	Rate
\$220	100%
\$325	87%
\$360	82%
\$424	72%
\$950	0%

Revenue of 5 Suites

10 Suite Study

Introduction

Analysis 1

Analysis 2

Analysis 3

Analysis 4

Conclusion

20	100%
ZU	TOO /0

\$360 ---> 52%

\$950 ---> 0%

ost per	Occupancy
Suite	Rate
\$220	100%
\$325	62%
\$360	52%
\$424	42%
\$950	0%

10 Suites

10 Suite Study

Introduction

Analysis 1

Analysis 2

Analysis 3

Analysis 4

Conclusion

20	1000/
ZU>	TOO 20

\$950 ---> 0%

Cost per	Occupancy
Suite	Rate
\$220	100%
\$325	62%
\$360	52%
\$424	42%
\$950	0%

Revenue of 10 Suites

Advantages and Disadvantages

Introduction

Analysis 1

Analysis 2

Analysis 3

Analysis 4

Conclusion

On-Site Construction

Prefabrication

Panels

Small delivery truck

Lighter crane pick 🗸

Quality control 🗸

Limited access X

Integrity of seams?

Attachment methods ?

No interior finishes?

3D Module

Complete entire unit 🗸

Design already created 🗸

Minimal site construction

Best quality control

Larger pick ?

Larger truck ?

Connections

Introduction

Analysis 1

Analysis 2

Analysis 3

Analysis 4

Conclusion

Introduction

Analysis 1

Analysis 2

Analysis 3

Analysis 4

Conclusion

Heartland Hotel Budget

ACTUAL BUDGET	COST
ndations	\$ 713,268.10
erstructure	\$ 4,474,147.48
rior Enclosure	\$ 2,341,547.31
fing	\$ 400,820.83
rior Construction	\$ 8,111,096.92
rior Finishes	\$ 3,231,833.54
veying & Chutes	\$ 807,362.00
hanical	\$ 5,176,729.00
Protection	\$ 296,887.50
trical	\$ 2,081,009.59
Voltage	\$ 757,500.00
pment	\$ 25,500.00
ding Demolition	\$ 7,167.73
Preparation	\$ 466,617.23
Improvements	\$ 147,464.00
Electrical Utilities	\$ 81,950.00
Services	\$ 541,870.30
niture, Fixtures & Equipment (FF&E)	\$ 3,411,740.28
rating Supplies & Equipment (OS&E)	\$ 830,015.03
eral Conditions/Staff	\$ 1,732,638.90
nits & Street/Sidewalk Closure Fees	\$ 573,166.00
d Party Inspections/Testing	\$ 160,000.00
gn Fees	\$ 950,000.00
rance	\$ 351,558.00
gn Builders Fee	\$ 1,071,898.00
mating & Construction Contingency	\$ 1,306,212.00
al:	\$ 40,049,999.74

Structural Lift Method Appendix

Upbrella Construction Breakdown

Schedule Break Down

Introduction

Analysis 1

Analysis 2

Analysis 3

Analysis 4

Conclusion

Task Name	Duration	
Floor Structure		
Construct Floor Framing (Joists and Girders)	5 days	
Lift and Install Columns	1 day	
Lower System onto Columns	1 day	
Finalize Structure (Stairs, Elevator Framing, Rebar, Inspection)		
Pour Floor Concrete	1 day	
Wall Enclosure Systems		
Exterior Infill Framing	8 days	
Install Stucco	9 days	
Install Metal Panels	9 days	
Install Glazing Systems	9 days	

Introduction
Analysis 1
Analysis 2
Analysis 3
Analysis 4

Conclusion

Cost Breakdown

	Category	Material	Description	Amount	Floor Multiplier	Unit	R.S. Means page	Labor- Hour	Material	Ī	Labor	Equipment	Total	Areas Totaled	Man-Hours
	Construction	Polycarbonate Panels	Walls and ceiling	17079.0	1	sf		0.107	\$ 1.2	26	\$ 5.64		\$ 117,722.1	3	1,827.45
	Enclosure	7' Aluminum with plywood planks	Floor	88.6	1	ea.		0.33	\$ 115.6	9	\$ -		\$ 10,250.1	\$ 224,233.26	29.24
	System	Steel Columns (W10x33)		2310.0	1	lf	310	0.093	\$ 32.1	9	\$ 5.61	\$ 2.78	\$ 93,747.4	7 \$ 224,233.20	214.83
L	System	Guardrails	Portable metal with base pads	624.0	1	lf		0.027	\$ 2.5	57	\$ 1.46		\$ 2,513.5	2	16.85
	Heating	Heaters	136 days of heat	4.5	1	month		0	\$ -	_	\$ -	\$ 1,300.00		S 19 592 80	-
ह्र	System	Propane for Heaters	8.25 GPH at 81%	7270.6	1	Gallons		0	\$ 1.8	_	\$ -	\$ -	\$ 13,699.4	/	-
ŧ	L	1.5VL20 decking	22 ga., 2" galvanized	14596.0	8	sf	168	0.009	\$ 2.4	_	\$ 0.55		\$ 352,200.3		1,050.91
ž	L	Concrete topping (3.25")	Lightweight	14596.0	8	sf	97	0.022	\$ 1.2	_	\$ 1.06	\$ 0.27	,		2,568.90
8		WWF (6x6, W1.4xW1.4)		146.0	8	csf	95	0.457	\$ 14.5	_	\$ 27.58		\$ 49,234.0		533.63
ĕ	Structure	Joists (W12x16)		1793.0	8	lf ''	158	0.064	\$ 23.6	_	\$ 3.82	\$ 1.74	+,	─ 5 1 837 730 07	918.02
ę.	H	Girders (W14x30)		965.0 517.0	8	lf lf	158 158	0.062	\$ 43.7 \$ 32.1	_	\$ 3.74 \$ 5.61	\$ 1.70 \$ 2.78			478.64
ε		Columns (W10x33 - roof)		317.0	-	IT	158	0.093	\$ 32.1	7	\$ 5.61	\$ 2.78	\$ 20,981.5	8	48.08
yste		Columns (W10x49 - all other levels)		485.7	8	If	158	0.102	\$ 71.9	3	\$ 6.11	\$ 2.55	\$ 313,155.6	6	396.33
# S		Double Girder Bridge Crane	2 Girder, 50' span, 3 ton	2.0	1	ea.	1200	72	\$ 46,753.0	_	\$ 4,766.03	\$ 355.00	\$ 103,748.0	5	144.00
ᆵ	L	Hydraulic Cylinders		7.0	1	ea.		0	\$12,492.0	_	\$ -		\$ 87,444.0	_	-
= 1	Equipment	Material Hoist	2 for 5 months	10.0	1	month	1335	0	\$ 2,892.2	25	\$ -	\$ -	\$ 28,922.5	0 \$ 264,680.39	-
Structural Uplift System (Proposed Method)	Equipment	Mast-Climbing Platform	2 for 4 months, 50' wide, less than 100' tall, rent	8.0	1	mast*month	21	0	\$ 3,118.6	60	\$ -	\$ -	\$ 24,948.8		-
ş		Street Cranes	Truck mounted, 150 tons, 18' radius	10.0	1	days		0	\$ 1,961.7	70	\$ -	\$ -	\$ 19,617.0	0	-
	Façade	Additional Exterior Enclosure Installation	7' taller building w/624' perimeter; added price is a multiple of the original exterior enclosure cost	4368.0	1	sf		0.28	\$ -		\$ -	\$ -	\$ 171,937.8	1 \$ 171,937.81	1,223.04
•	Profit	Profit from Opening	Opens 1.5 months earlier	0.0	0			0	\$ -		\$ -	\$ -	\$ (170,169.0	0) \$ (170,169.00) -
ı												Tota	l: \$ 2,345,006.1	9 \$ 2,345,006.19	9,449.91
	Construction	Scaffolding Framing Erection	6-12 stories, 6'4x5	32.9	10.6	100sf	19	3.6	\$ 35.2	21	\$ 196.28		\$ 80,728.5	3	1,255.46
	Enclosure	Scaffolding planks 2"x10"x16'	Average cost of below and above 50'	241.0	10.6	ea.	20	0.333		_	\$ 18.34		\$ 62,282.9		850.68
	System	Scaffolding Tarp	Polyethylene sheet	59.7	7	100sf	23	0.216	\$ 4.0	00	\$ 9.47		\$ 5,633.2		90.29
8	Heating	Heaters	140 days of heat at 87%	4.7	1	month		0	\$ -	_	\$ -	\$ 1,300.00		7	
ま	System	Propane for Heaters	8.25 GPH at 87%	8038.8	1	Gallons		0	\$ 1.8	88	\$ -	\$ -	\$ 15,147.0	\$ 21,213.68	-
Σ		Concrete Slab	6" elevated	14596.0	8	sf	98	0.022	\$ 2.0)4	\$ 1.06	\$ 0.27	\$ 393,192.8	9	2,568.90
Original Construction Method	ſ	PT Formwork	Multiple by number of forms - 4 uses, so 2x floor	14596.0	3	sf	76	0.086	\$ 1.1	9	\$ 4.59		\$ 253,061.8	О	3,765.77
ast.	I	PT Tendons		9075.0	8	lb.	95	0.027	\$ 0.6	51	\$ 1.63	\$ 0.03	\$ 165,114.1	8	1,960.20
ខ	Structure	Slab Rebar	Elevated slabs, #4-#7	860.0	8	lb.	93	0.006	\$ 0.5	50	\$ 0.34	\$ -	\$ 5,770.3	\$ 1,205,195.30	41.28
<u> </u>		Column Concrete	16x16, less than 2% reinf, 9.57'	30.5	9	су	97	0	\$ 283.6	69	\$ 677.44	\$ 46.00	\$ 276,818.9	3	-
g.		Column Rebar	#3-7 Column Rebar	19936.5	1	lb.		0.011	\$ 0.5	0	\$ 0.65	\$ -	\$ 22,936.1	0	219.30
ō		Column Rebar	#8=18 Column Rebar	95703.7	1	lb.		0.007	\$ 0.5	0	\$ 0.42	\$ -	\$ 88,301.0	1	669.93
- [Equipment	Tower Crane		7.5	1	month	1334	0	\$ 17,001.4	10	\$ -	\$ -	\$ 127,510.5	0 \$ 144,864.00	-
L	Edorbinem	Material Hoist	6 months	6.0	1	month	1335	0	\$ 2,892.2	25	\$ -	\$ -	\$ 17,353.5	0 \$ 144,884.00	-
[Tota	l: \$1,519,917.6	4 \$ 1,519,917.64	11,421.81
									Compara	tive	Total (Propo	sed - Original): \$ 825,088.5	5 \$ 825,088.55	(1,971.89)

Introduction

Analysis 1

Analysis 2

Analysis 3

Analysis 4

Conclusion

Original Schedule

Proposed Schedule

Structural Breadth Calculations

Introduction

Analysis 1

Analysis 2

Analysis 3

Analysis 4 Conclusion

Decking

Requirements

- Composite decking because:
 - Thinner
 - More economic use of materials
- 3-1/4" topping for fireproofing for lightweight concrete
- 3-spans
- 8'2 spacing
- Unshored

Loads taken from the structural drawings:

- Live Load 40psf for rooms and corridors above the 2nd floor
- Wind Load N/A
- Dead Load assumed 10pst

 $Total\ Load = Dead + Live$

$$50psf = 10 + 40$$

Decking chosen from Vulcraft Steel Roof and Floor Deck catalog:

1.5VL20 with lightweight concrete

4.75" deep

t=3.25" (for fireproofing)

37psf = concrete + deck self-weight

Recommended Welded Wire Fabric: 6x6 - W1.4xW1.4

Maximum superimposed load with a 8'6 clearspan: 200psf ✓

- Joists = Assumed 5psf
- Superimposed dead load = 10psf
- Live load = 40psf
 - Live Load reduction: $K_{II}A_{T} = 8'2*2*23'8 = 387 < 400 not reducible$

Load Combinations

- Dead: 37+5+10=52psf
- Live: 40psf

1.4D = 75.6psf

1.2D+1.6L = 126.4psf - controls

Check Decking:

126.4psf < 200psf limit ✓

Weight:
$$W_u = 126.4psf * \frac{8'2}{1000\frac{lb}{lin}} = 1.03 \ klf$$

$$M_U = \frac{wl^2}{8} = \frac{(1.03klf)(23'8)^2}{8} = 72.11ft \cdot kips \rightarrow W12x16^2$$

 $M_U = 72.11 \le 75.4 = \phi M_v$

$$V_U = \frac{wl}{2} = \frac{(1.03klf)(23'8)^2}{2} = 12.19kips$$

$$V_U = 12.19 \le 79.2 = \phi V_n$$

Check Self Weight Assumption

Assumed
$$5psf > \frac{16lbs}{8'2} = 1.96$$
 \checkmark

Final Design: W12x16

$\frac{\text{Spacing:}}{\frac{18'5+23'8}{2}} = 21.04'$ Span = 24'5

- Deck and Concrete load = 37psf
- Superimposed dead load = 10psf
- Live load = 40psf

ive Load reduction

$$L = 0.4L_0$$
 -or-

$$L = L_0 * \left(0.25 + \frac{15}{\sqrt{K_{LL}A_T}}\right) = L_0 * \left(0.25 + \frac{15}{\sqrt{(24'5*21.04*2)}}\right) = 0.72L_0 - \text{controls}$$

Load Combinations:

1.4D = 75.6psf

1.2D+1.6L = 110.75psf - controls

$$W_u = 110.75psf * \frac{21.04'}{1000 \frac{lb}{klp}} = 2.33klf$$

$$M_U = \frac{wt^2}{8} = \frac{(2.33klf)(24r5)^2}{8} = 173.64ft \cdot kips \Rightarrow W14x30^2$$

 $M_U = 173.64 \le 177 = \phi M_{\odot}$

$$V_U = \frac{wl}{2} = \frac{(2.33klf)(24/5)^2}{2} = 28.45kips$$

$$V_{U} = 28.45 \le 112 = \phi V_{n} \checkmark$$

Check Self Weight Assumption:

Assumed
$$2psf > \frac{30lbs}{21.04t} = 1.43$$

Final Design: W14x30

$$A_T = 24'5 * \frac{23'8 + 18'5}{2} = 513.73 \, sf$$

- Deck and Concrete load = 37psf
- Superimposed dead load = 10psf
- Snow Load = 16pst
- Live load = 40psf
- Number of stories: 1 through 9 and the roof = 8 + roof Live Load reduction

$L = 0.5L_0$ - controls

$$L = L_0 * \left(0.25 + \frac{15}{\sqrt{K_{LL}A_T}}\right) = L_0 * \left(0.25 + \frac{15}{\sqrt{(8*4*513.73)}}\right) = 0.37L_0$$

Live Load = 40*0.5 = 20psf

Dead Load = 37+5+10+2 = 54psf

Load Combinations for the Roof

1.2D + 1.6L + 0.5S = 128.8psf - controls

128.8 psf * 513.73 sf = 66.168 lbs = 66.17 kips - for the roof

Load Combinations for the Floors:

1.2D + 1.6L = 90.4psf - controls

128.8 psf * 513.73 sf = 66.168 lbs = 66.17 kips - for the roof

 ${\scriptstyle (Number\ of\ Stories)*(90.4psf)*(513.73sf)} + 66.17 = Total\ Load$

ľ	Columns for Floors	Number of Stories	Total Load (Kips)	Column Design Size	Pult
	1-2	8	438		
	2-3	7	392		
	3-4	6	345		
	4-5	5	299	W10x49	522 kin
	5-6	4	252	WIUX49	532 kip
	6-7	3	206		
	7-8	2	160		
	8-9	1	113		

W10x33

Mechanical Breadth

Introduction

Analysis 1

Analysis 2

Analysis 3

Analysis 4

Conclusion

MAXIMUM CFM 6,000 6,000 ATURAL GAS 1' NPT 1' NPT PROPANE 1' NPT 1' NPT POWER SUPPLY 230/1/60/25* 230/1/60/25* V/PH/HZ/A SIMENSIONS x W x H (IN) 1,100,000 1,1			
BTU / HR MINIMUM 1,000,000 1,100,000 1,100,000 ATURAL GAS 1' NPT PROPANE 1' NPT 1' NPT POWER SUPPLY 230/1/60/25* 230/1/60/25* V/PH/HZ/A DIMENSIONS X W X H (IN) VEIGHT (LBS) 939 889	ECIFICATIONS	THP-1000	THP-1100
MINIMUM MAXIMUM CFM 6,000 6,000 ATURAL GAS 1' NPT 1' NPT PROPANE 1' NPT 1' NPT POWER SUPPLY 230/1/60/25* 230/1/60/25* V/PH/HZ/A DIMENSIONS X W X H (IN) VEIGHT (LBS) 939 889		3	
ATURAL GAS 1' NPT 1' NPT PROPANE 1' NPT 1' NPT POWER SUPPLY 230/1/60/25* 230/1/60/25* V/PH/HZ/A DIMENSIONS X W X H (IN) ZEIGHT (LBS) 939 889	BTU / HR MINIMUM MAXIMUM		
PROPANE 1' NPT 1' NPT POWER SUPPLY 230/1/60/25* 230/1/60/25* V/PH/HZ/A DIMENSIONS x W x H (IN) ZEIGHT (LBS) 939 889	CFM	6,000	6,000
POWER SUPPLY 230/1/60/25* 230/1/60/25* V/PH/HZ/A DIMENSIONS x W x H (IN) ZEIGHT (LBS) 939 889	ATURAL GAS	1" NPT	1" NPT
SUPPLY 230/1/60/25* 230/1/60/25* V/PH/HZ/A 0IMENSIONS 76x35x69 80x36x71 X W X H (IN) 939 889	PROPANE	1" NPT	1" NPT
76x35x69 80x36x71 x W x H (IN) /EIGHT (LBS) 939 889		230/1/60/25*	230/1/60/25*
	OIMENSIONS . x W x H (IN)	76x35x69	80x36x71
BASE CASTERS CASTERS	VEIGHT (LBS)	939	889
	BASE	CASTERS	CASTERS

374				J
				Fe
	ı			١
	ı			
	ı			
	ı			
	ı			
	ı			
	ı			

http://temp-air.com/heating/direct-fired-heaters-th/

Month	Temperature	Average
WIOIILII	Range (°F)	Temperature (°F)
November	26-41	33.5
December	12-27	19.5
January	8-24	16
February	13-29	21
March	24-41	32.5
April	37-58	47.5

ACI 306R-10 Guide to Cold Weather Concreting

Introduction

Analysis 1

Analysis 2

Analysis 3

Analysis 4 Conclusion

Keep the temperature of concrete as placed as close to the recommended minimum value as practicable.

Preparation before concrete is placed requires a temperature increase of the formwork, reinforcement, and other surfaces that will contact fresh concrete so the temperature of the freshly placed concrete will not decrease below the minimums as placed and maintained (Table 5.1). There are many techniques for warming formwork and embedded items, including heated enclosures, electric blankets, hydronic heating systems, or other acceptable means. Best practice indicates that all surfaces should be above the freezing temperature of water. However, take care to limit surface temperatures to no more than 10°F (5°C) greater or 15°F (8°C) less than that of the concrete to avoid inconsistent setting, rapid moisture loss, and plastic shrinkage cracking.

Table 5.1—Recommended concrete temperatures

		Section size, minimum dimension					
		< 12 in. (300 mm)	12 to 36 in. (300 to 900 mm)	36 to 72 in. (900 to 1800 mm)	> 72 in. (1800 mm)		
Line	Air temperature		Minimum concrete temperati	ure as placed and maintained			
1	_	55°F (13°C)	50°F (10°C)	45°F (7°C)	40°F (5°C)		
1		Minimum concrete temperature as mixed for indicated air temperature*					
2	Above 30°F (-1°C)	60°F (16°C)	55°F (13°C)	50°F (10°C)	45°F (7°C)		
3	0 to 30°F (-18 to -1°C)	65°F (18°C)	60°F (16°C)	55°F (13°C)	50°F (10°C)		
4	Below 0°F (-18°C)	70°F (21°C)	65°F (18°C)	60°F (16°C)	55°F (13°C)		
5	Maximum a		allowable gradual temperature drop in first 24 hours after end of pro		protection		
3	_	50°F (28°C)	40° (22°C)	30°F (17°C)	20°F (11°C)		
*							

*For colder weather, a greater margin in temperature is provided between concrete as mixed and required minimum temperature of fresh concrete in place

7.1—Protection methods

Protect concrete from freezing as soon as practicable after placement, consolidation, and finishing. This protection can be provided by concrete mixture acceleration, insulation, heat systems, enclosures, or a combination of these practices, and should be planned before placement. Accelerating the

Table 7.1—Length of protection period for concrete placed during cold weather

		Protection period at minimum tempera- ture indicated in Line 1 of Table 5.1, days*				
ine	Service condition	Normal-set concrete	Accelerated-set concrete			
1	No load, not exposed	2	1			
2	No load, exposed	3	2			
3	Partial load, exposed	6	4			
4	Full load	Refer to	Chapter 8			
\ dav	is a 24-hour period.					

Cost Analysis

Introduction

Analysis 1

Analysis 2

Analysis 3

Analysis 4

Conclusion

Category	Original Method	Structural Uplift Method	Cost Change (Original - Proposed)	
Construction Enclosure System	\$148,644.67	\$224,233.26	\$(75,588.59)	
Heating System	\$21,213.68	\$19,592.80	\$ 1,620.88	
Structure	\$1,205,195.30	\$1,834,730.94	\$(629,535.65)	
Equipment	\$144,864.00	\$264,680.39	\$(119,816.39)	
Exterior Enclosure	\$0	\$171,937.81	\$(171,937.81)	
General Conditions	\$0	\$(112,111.93)	\$112,111.93	
Total	\$1,519,917.64	\$2,556,279.89	\$(883,145.63)	

\$883,000 cost increase

33 Day Schedule Reduction

\$170,000 Increased Profit

Structural Lift Method Appendix

Years in Current Position

Years in Construction Industry

Introduction Analysis 1

Analysis 2

Analysis 3

Analysis 4

Conclusion

